Position Statement from the Australian Knee Society on Arthroscopic Surgery of the Knee, including reference to the presence of Osteoarthritis or Degenerative Joint Disease

Updated October 2016

In preparing the following evidence based document, the Australian Knee Society, on behalf of the Australian Orthopaedic Association, has combined the individual clinical expertise of its members with published randomized controlled trials from a systematic review of the literature.

Position Statement

Arthroscopic debridement, and / or lavage, has been shown to have no beneficial effect on the natural history of osteoarthritis, nor is it indicated as a primary treatment in the management of osteoarthritis. However, this does not preclude the judicious use of arthroscopic surgery, when indicated, to manage symptomatic coexisting pathology, in the presence of osteoarthritis or degeneration. Partial medial meniscectomy is not indicated as an initial treatment for atraumatic tears of degenerative menisci, excluding bucket handle tears and surgeon assessed locked or locking knees.

Arthroscopic Surgery in the Presence of Osteoarthritis or Degeneration

There are certain clinical scenarios in which arthroscopic surgery, in the presence of osteoarthritis, may be appropriate. These include, but are not necessarily limited to, the following:

- known or suspected septic arthritis
- symptomatic non-repairable meniscal tears after failure of an appropriate trial of a structured rehabilitation program
- symptomatic loose bodies
- surgeon assessed locked or locking knees
- traumatic or atraumatic meniscal tears that require repair
- inflammatory arthropathy requiring synovectomy
- synovial pathology requiring biopsy or resection
- large unstable chondral pathology causing surgeon assessed locking or locked knee
- as an adjunct to, and in combination with, other surgical procedures as appropriate for osteoarthritis: for example high tibial osteotomy and patello-femoral realignment
- diagnostic arthroscopy when the diagnosis is unclear on MRI or MRI is not possible, and the symptoms are not of osteoarthritis
The decision to proceed with arthroscopic surgery in the presence of osteoarthritis or degeneration should be made by the treating orthopaedic surgeon:

- after careful review of the clinical scenario: particularly the assessment of the relative contributions of the osteoarthritis, and the arthroscopically treatable pathology, to the patient’s symptoms
- with knowledge of the relevant evidence base, as listed in this document
- after an appropriate trial of structured rehabilitation
- and after thoughtful discussion with the patient about the relative merits of the procedure versus ongoing non-operative treatment

Definitions

Osteoarthritis, or degenerative joint disease, is a progressive clinical disorder of joints characterized by gradual diffuse loss of articular cartilage, effects on the underlying bone, and secondary compromise of joint function. This should be distinguished from focal articular cartilage pathology in an otherwise normal joint.

There is a spectrum of severity of osteoarthritis from minor partial thickness articular cartilage abnormalities to large areas of full thickness loss. Clinical decision making requires careful assessment of the degree of arthritis, its likely contribution to the symptoms, and the potential contribution of additional pathology to those symptoms.

The concepts of degenerative versus traumatic, in regard meniscal pathology and tearing, is arbitrary (1). No universally accepted definition of degeneration or degenerative change exists, and commonly used clinical diagnostic descriptors lack validity.
Assessment and Interpretation of MRI Scanning

Whilst plain radiography is the preferred initial imaging modality, MRI remains excellent adjunct both to clinical decision making, and to guiding the use of surgery. In particular, it can be used to more accurately assess the degree of arthritis, and to look for and assess additional pathology that may correlate with a patient’s symptoms. MRI reports should be interpreted carefully by the treating surgeon, in combination with direct review of the imaging, when determining the clinical relevance of the findings. MRI descriptions of meniscal tearing, degeneration, and pathology in the absence of trauma, lack validity. Further information on the appropriate radiological investigation of knee osteoarthritis can be obtained in the “Radiological Investigation Joint AKS-AMSIG Submission to the Australian Commission on Quality and Safety in Healthcare on the Radiological Investigation of Knee Osteoarthritis (http://www.kneesociety.org.au/resources/Joint-AKS-AMSIG-submission-ACQSH-investigation-knee-osteoarthritis.pdf).

Systematic Review: Arthroscopic Surgery in the Presence of Osteoarthritis

Introduction

Our aim was to examine the evidence of effectiveness, inclusion and exclusion criteria, the effects of age and adverse events, in existing knee arthroscopy randomized controlled trials, with a view to the formulation of clinical indication guidelines based on ICD – 10 codes for knee arthroscopy in the presence of degeneration or osteoarthritis.

Methods

The PRISMA statement for systematic reviews was utilized for this review (2).

Literature search and Study Selection

A systematic search for clinical indications in Medline, Embase, CINAHL, and the Cochrane Central Register of Controlled Trials (CENTRAL) in December 2015 was undertaken. The keywords “arthroscopy” and “knee”, or variations of them were used. Limitations to clinical trials and human studies were applied. No search restrictions for follow-up time, study size, or date of publication were set.

Eligibility criteria

Inclusion criteria:
1. Randomised controlled trials (RCT) assessing the effectiveness of arthroscopic surgery involving meniscal surgery, debridement, chondroplasty, loose body removal or any combinations, with or without clinical or radiographic osteoarthritis, compared with non-surgical treatments, sham surgery or lavage.
2. English language reports.
3. Publication in a peer reviewed journal.

Exclusion criteria:

All criteria had to be satisfied for inclusion and other systematic reviews or meta-analyses were excluded.
Data Extraction
Titles and/or abstracts of studies that were retrieved using the search strategy were screened independently by two review authors to identify studies that potentially met the inclusion criteria. The full texts of these potentially eligible studies were retrieved and independently assessed for eligibility by the two review team members. Any disagreement over the eligibility of a particular study was resolved through consensus with the addition of a third reviewer.

A standardised form was used to extract data from the included studies for assessment of study quality and evidence synthesis. Extracted information included: study population; primary diagnosis, inclusion criteria, exclusion criteria, details of the intervention; details of the comparator; study methodology; outcomes and times of measurement, and power analysis. Two review authors extracted the data independently.

If two separate studies with the same authors and the same intervention had overlapping dates of patient enrolment, then only one study was included. In this situation, the reviewer selected the study with the longer follow-up. If a different data analysis or sub-analysis was undertaken, then the supplemental study was included.

ICD 10 Diagnosis Matching
International Classification of Disease 10th Revision Clinical Modification (ICD-10-CM) codes or Procedure Coding System (ICD-10-PCS) codes were matched by two review authors to the inclusion & exclusion criteria of all matched studies. ICD-10-CM codes were developed by the Centers for Disease Control and Prevention in conjunction with the National Center for Health Statistics (NCHS), for outpatient medical coding and reporting, as published by the World Health Organization. ICD-10-PCS codes were developed by the Centers for Medicare and Medicaid Services (CMS) as a system of classification of procedural codes to classify all health interventions by medical professionals (3).

Results

Knee Arthroscopy Outcomes Studies
14 RCTs of arthroscopic knee surgery (Table 1) fulfilled the search criteria (Figure 1) in three different primary clinical ICD – 10 diagnosis categories (Table 2). In four papers, the primary clinical diagnosis was osteoarthritis (4)(5)(6)(7) (OA Papers) (ICD – 10 Code M17.9). In one paper, Hubbard et al (8) the primary clinical diagnosis was of a single medial femoral condyle degenerative articular lesion, however not enough information was provided by the authors to allow classification of the degenerative chondral lesion as clinical osteoarthritis.

In 8 papers the primary clinical diagnosis was a symptomatic degenerative atraumatic medial meniscal tear (9)(1)(10) (11) (12) (13)(14)(15) (MMT Papers) (ICD-10 Code M23.2) in the presence of chondral degeneration of various degrees. In one paper, Kettunen et al (16) the primary clinical diagnosis was patellofemoral pain (PF Pain Group) (ICD-10 M22.4).

Three RCTs were assessed as having inadequate power for the primary outcomes measure. Østerås et al (15) examined arthroscopic partial medial meniscectomy in the presence of knee osteoarthritis compared to physical therapy. They included a power analysis, however the final number of patients in their study was less than stated to achieve adequate power. Chang et al(6) lacked a power analysis, however a Post Hoc Power Analysis using G-Power (17) revealed the paper was inadequately powered (power < 0.8) to confirm the self described meaningful improvement of a reduction of >1 cm from the baseline VAS score. Sihvonen et al (14) is a post-hoc sub group analysis of patients from their original 2013 RCT(1) who suffered self-described mechanical symptoms, defined as catching and clicking excluding locked or recently locked knees. The authors state that the sub-group analysis was underpowered.

Three papers favored arthroscopic intervention at final follow-up, two in the OA - Chondral Degeneration Category(7)(8) and one in the MMT Category(9), the remaining 11 papers reported no outcome difference
compared to the control intervention.

**Risk of Bias Assessment**
Studies were rated for their risk of bias in Table 3. There were no studies with a low risk of bias in all 7 risk domains assessed in the OA - Chondral Degeneration Category and Patellofemoral Pain Category(7). In MMT studies, there was only one study of low risk of bias(1) in all domains.

**MMT Papers Exclusions**
In the 8 papers with a primary clinical diagnosis of medial meniscal tearing, five papers excluded surgeon assessed locked or locking knees(13)(1)(9)(15)(14) and one excluded loose bodies(18), with Vermesan et al not stating any exclusion criteria (Table 4). The Sihvonen et al(19) and Sihvonen et al(14) trial protocol excluded surgeon assessed locked or recently locked knees and major chondral flaps but included knees with patient reported catching and locking symptoms. Yim et al(11) & Katz et al(13) also included patients with mechanical symptoms

A history of traumatic onset was an exclusion criterion in six MMT Papers papers (15)(11)(1)(18)(14), with Vermesan et al(20) not stating any exclusion criteria. No paper included meniscal repair as a management intervention and meniscal repair was an exclusion criteria in three papers (1)(11)(14). Five of the eight MMT Papers reported cross-over into the surgical group from the control, with rates of between 2% - 33%.

No study included diagnostic arthroscopy. Inflammatory joint disorders were excluded in 4 papers, or not an inclusion criteria in the remainder.

**OA Papers - Exclusion Criteria**
Merchan and Galindo(7) excluded patients with pain greater than six months, males with a weight over 85 kg, females greater 70 kg, instability or an angular deformity greater than 15 degrees. Hubbard et al(8) excluded any other intra-articular lesion except for symptomatic medial femoral condyle degenerative lesions in patients with no radiographic osteoarthritis. Moseley et al(4) added the Kellgren and Lawrence score for each compartment together, excluding the patients with a score of greater than nine. Kirkely et al(5) excluded patients with large meniscal tears, bucket handle tears, prior major knee trauma, inflammatory or post infectious arthritis, deformity > 5 degrees, prior trauma or KL 4 in two compartments.

**Types of Medial Meniscal Tear**
Only one paper, Kim et al(11), described the MMT pattern, the remainder grouped all MMT patterns together as atraumatic degenerative. Sihvonen et al(1) described an atraumatic sudden symptom onset sub-group who did no better with surgical intervention.

**Cross Over Into Surgical Group**
None of the OA / Chondral Degeneration papers described cross over into the surgical group. Seven of the nine MMT Papers described cross-over into the surgical group of 0% (15), 2%(11), 2.5%(14), 6.6% (1), 21.3%(9), 30.2% (13), and 33.3%(18). Reasons for cross over into the surgical group were either those of persistent symptoms (18)(1)(9) or not given(11)(13).

Herrlin et al and Katz et al stated that patients who crossed over into the surgical group had significantly worse symptoms than the remainder of the control group prior to crossing over, however achieved similar outcomes to the control and surgical group.

**The Effect of Age**
Only one paper specifically examined the effect of age on outcome. Gauffin et al(9) reported better outcomes for both rehabilitation and arthroscopic intervention for 55-64 year old patients compared to younger patients aged 45-55 years.

**Adverse Events**
No paper described a greater rate of adverse events in the arthroscopic group.

Lateral Meniscal Tears
No study examined outcomes of partial meniscectomy as a treatment for lateral meniscal tears.

Outcomes of Patients with Atraumatic Medial Meniscal Tears Who Have Failed Non-Operative Management
The inclusion criteria for four of the eight meniscal tears studies included failure of clinician assessed non-specific non-operative management of between 1 & 3 months. No medial meniscal study examined outcomes of patients who had undergone structured rehabilitation program and continued to have had severe self-described symptoms after by randomization to operative versus non-operative intervention.

Outcomes of Patients Who Have Self-Reported Mechanical Symptoms
Self-reported mechanical symptoms were common in all papers. One paper(14), a secondary analysis of a previously published RCT, found no difference in patients with atraumatic self-described mechanical symptoms who underwent medial meniscectomy compared to a sham procedure. Kirkely et al (5) found no improvement in a sub-group of patients with osteoarthritis and self-described mechanical symptoms compared to rehabilitation.

Progression of Osteoarthritis After Partial Meniscectomy
One paper, Herrlin et al(18), found no difference in osteoarthritis progression 5 years after partial medial meniscectomy compared to physiotherapy.

Review Conclusions
All of the studies in the osteoarthritis group were at high risk of bias in at least one domain.

One OA study was at low risk of bias from blinding. In this study, patients who were assessed clinically to have moderate to severe knee osteoarthritis, in the absence of loose bodies or locking, showed no advantage of arthroscopic debridement over lavage or sham surgery.

In a study with a high risk of bias, patients with isolated medial femoral condyle degenerative lesions benefited from arthroscopic intervention compared to rehabilitation.

In a study with a high risk of bias, arthroscopic patellofemoral chondroplasty did not benefit patients compared to non-operative management.

In atraumatic medial meniscal tears, in the absence of surgeon assessed locking or a locked knee, or a repairable meniscus tear, a study with a low risk of bias showed no advantage of arthroscopic partial meniscectomy over sham surgery.

In a study with a high risk of bias in one domain, patients with an atraumatic onset of self-described mechanical symptoms, in the presence of a medial meniscal tear, other than surgeon assessed recent locking, a locked knee or symptomatic loose bodies, there was no advantage to arthroscopic partial meniscectomy over sham surgery.

The role of arthroscopic surgery in lateral meniscal tears remains uncertain, as it has not been subjected to a randomised controlled trial.

The role of subchondral drilling or microfracture undertaken in combination with an osteotomy remains uncertain as no randomised controlled studies exist comparing it to osteotomy alone.

Preservation of the medial or lateral meniscus by repair of the body or root, with or without degeneration of
the joint, has not been subjected to a randomised controlled trial.

No study investigated the role of diagnostic arthroscopy in situations where MRI was inconclusive or unable to be performed. The value of MRI in the investigation of atraumatic non-locking knee symptoms in presence of osteoarthritis remains uncertain.

No medial meniscal tear study examined outcomes of patients who failed a structured rehabilitation program by randomization to operative versus non-operative intervention.

References


<table>
<thead>
<tr>
<th>Author &amp; Year</th>
<th>Primary Dx with other intra-pathology</th>
<th>Rx</th>
<th>Inclusions</th>
<th>Ixx n</th>
<th>Control</th>
<th>% Not enrolled</th>
<th>Max XR OA</th>
<th>Joint Specific Exclusions</th>
<th>% X Over</th>
<th>Notes</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>1</strong> Merchan and Galindo 1993</td>
<td>Mild OA</td>
<td>Synovectomy; débridement; APM, CPY, E/O osteophytes &amp; PT</td>
<td>Painful &quot;limited&quot; OA, including patients with meniscal tears, loose bodies &amp; synovitis.</td>
<td>XR 73</td>
<td>NSAID, Activity modificatio n.</td>
<td>NS</td>
<td>Ahlbach 0-1, KL 1-2</td>
<td>Duration of pain &gt;6 months, patient body weight &gt;85 kg in men and &gt;70 kg in women, and history of previous surgery. Instability or an angular deformity &gt; 15°. Patellofemoral OA.</td>
<td>NA</td>
<td>OM = Modified HSSK Score. APM performed in 31/35. Power &gt; 0.8. Favour ed A/S at 1 - 3 years (mean 25 months)</td>
<td></td>
</tr>
<tr>
<td><strong>2</strong> Chang et al 1993</td>
<td>Osteoarthriti s</td>
<td>AP M, CPY, Synovectomy</td>
<td>Pain after 3 months after rehabilitation</td>
<td>XR 32 Pts</td>
<td>Needle Lavage</td>
<td>50</td>
<td>KL 1-3</td>
<td>Prior Knee surgery within 6 months, TKA, OA KL Grade IV.</td>
<td>NS</td>
<td>Inadequate power. 50% had KL Grade 3</td>
<td>No difference at 12 months.</td>
</tr>
<tr>
<td><strong>3</strong> Hubbard et al 1996</td>
<td>Symptomati c single MFC degenerative chondral lesion ObC Grade 3 or 4</td>
<td>Chondroplasty. No APM.</td>
<td>Symptoms &gt; 1 yr; no laxity or no deformity, full ROM, single Medial Femoral Condyle degenerative lesion, ObC Grade 3 or 4, no other intra-articular pathology, normal plain XR, modified Lysholm score &lt; 38/70.</td>
<td>XR 76</td>
<td>A/S Lavage</td>
<td>NS</td>
<td>KL O</td>
<td>Degenerative lesions on other joint surfaces, other intra-articular pathology, radiographic loss of joint space, previous operation, steroid injection for any reason. MMT or tibial degeneration.</td>
<td>NA</td>
<td>OM = Binary self-described pain presence/ absence &amp; Modified Lysholm. Power &gt; 0.8. Favour ed A/S at 1 &amp; 5 years</td>
<td></td>
</tr>
<tr>
<td><strong>4</strong> Moseley et al 2002</td>
<td>Tricompartmental OA</td>
<td>APM, Chondroplasty,</td>
<td>&lt; 75 years, moderate Knee pain that had failed 6 months medical management with VAS Pain Score &gt; 3, failed medical Mx and diagnosis of OA based on ACR definitions</td>
<td>XR 180</td>
<td>Sham or Lavage</td>
<td>44</td>
<td>KL 3-4</td>
<td>Scoring &gt; 9 by KL score addition in three compartments</td>
<td>NA</td>
<td>Three arm study. In lavage group, “mechanically important, unstable tears” were debrided. In sham group, joint not entered. OM = bespoke Knee Specific Pain Scale, AIMS2 &amp; SF 36 PF</td>
<td>No difference at 2 years between 3 groups.</td>
</tr>
<tr>
<td><strong>5</strong> Kirkley et al 2008</td>
<td>Symptomati c moderate to severe OA</td>
<td>Synovectomy; débridement; APM, CPY, E/O osteophytes &amp; PT</td>
<td>Age &gt;18 yo with idiopathic or secondary OA KL Grade 2-4.</td>
<td>XR &amp; MRI 188</td>
<td>PT</td>
<td>16</td>
<td>KL 0-4</td>
<td>Large meniscal tears, bucket handle tears, prior major knee trauma, inflammatory or post infectious arthritis, deformity &gt; 5 degrees, prior trauma, KL 4 in two compartments.</td>
<td>0%</td>
<td>OM = WOMAC &amp; SF 36</td>
<td>No difference at two years.</td>
</tr>
<tr>
<td>Author &amp; Year</td>
<td>Primary Dx</td>
<td>Rx</td>
<td>Inclusions</td>
<td>Ix</td>
<td>n</td>
<td>Control</td>
<td>% Not enrolled</td>
<td>Max XR OA</td>
<td>Joint Specific Exclusions</td>
<td>% X-Ove</td>
<td>PA</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>----</td>
<td>------------</td>
<td>----</td>
<td>---</td>
<td>---------</td>
<td>----------------</td>
<td>----------</td>
<td>--------------------------</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>1 Yim et al12 2013</td>
<td>Symptomatic horizontal degenerative MMT</td>
<td>APM &amp; PT</td>
<td>Horizontal degenerative Medial MT on MRI &amp; daily knee pain on the medial side with mechanical symptoms, failed non-surgical Mx</td>
<td>MRI</td>
<td>108</td>
<td>PT</td>
<td>30</td>
<td>KL 0-1</td>
<td>Definite trauma, ligament deficiency, systemic arthritis, KL 2-4 and osteonecrosis, meniscal repair, abrasion arthroplasty, subchondral drilling, curettage.</td>
<td>2</td>
<td>Y</td>
</tr>
<tr>
<td>2 Sihvonen et al13 2013</td>
<td>Symptomatic Degenerative MMT confirmed on MRI &amp; at AS</td>
<td>APM &amp; PT</td>
<td>35 to 65 y , knee pain &gt;3 months that was unresponsive to conventional conservative treatment and had clinical findings consistent with a tear of the medial meniscus</td>
<td>XR &amp; MRI</td>
<td>146</td>
<td>Sham surgery &amp; PT</td>
<td>12</td>
<td>KL 0-1</td>
<td>Trauma-induced onset of symptoms, locked or recently locking knee, decreased range of motion, instability, pathology other than degenerative knee disease requiring treatment other than arthroscopic partial meniscectomy, Meniscal repair, micro-fracture to chondral defect, major chondral flap, Clinical OA based on ACR CCR or KL &gt;1</td>
<td>6.6</td>
<td>Y</td>
</tr>
<tr>
<td>4 Katz et al14 2013</td>
<td>Symptomatic Degenerative MMT with mild to moderate OA</td>
<td>APM, CPY &amp; PT</td>
<td>&gt; 45 y &amp; &gt;1 month symptoms, imaging evidence of mild-to-moderate knee osteoarthritis, symptoms of the following: clicking, catching, popping, giving way, pain with pivot or torque, pain that is episodic, pain that is acute and localized to one joint line, KL 0-3</td>
<td>XR &amp; MRI</td>
<td>330</td>
<td>PT</td>
<td>75</td>
<td>KL 0-3</td>
<td>Chronically locked knee, KL 4, clinically symptomatic chondrocalcinosis, bilateral symptomatic meniscal tears, prior surgery on same knee</td>
<td>30.2</td>
<td>Y</td>
</tr>
<tr>
<td>5 Herrlin et al15 2013</td>
<td>MRI- verified degenerative MMT &amp; radiographic AO Grade &lt;2 (Ahlback)</td>
<td>APM ,CPY &amp; PT</td>
<td>Age 45-60, daily medial pain over 2-6 months.</td>
<td>XR &amp; MRI</td>
<td>96</td>
<td>PT</td>
<td>55</td>
<td>Alback 1, ObB I-IV</td>
<td>History of trauma, OA &gt; Alback 1, Rheumatoid Arthritis, Loose bodies, knee instability, osteochondral defects &amp; tumours, TKA, prior knee surgery in last year</td>
<td>33</td>
<td>Y</td>
</tr>
<tr>
<td>6 Vermesan et al15 2013</td>
<td>MRI- verified degenerative medial meniscus tear and radiographic osteoarthritis</td>
<td>APM, CPY &amp; PT</td>
<td>Non traumatic symptomatic knees with degenerative lesions medial compartment on MRI</td>
<td>MRI</td>
<td>120</td>
<td>CSI</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>N</td>
</tr>
</tbody>
</table>

**Medial Meniscal Tear RCTs**
### Author & Year | Primary Dx | Rx | Inclusions | Ix | n | Control | % Not enrolled | Max XR OA | Joint Specific Exclusions | % X-Ove | PA | Notes | Outcome
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | ---
7 Østeras et al 2013 | MRI verified degenerative MMT and radiographic OA | APM | Age 35-60 | MRI | 17 | PT | 12 | KL 0-2 | ACL tears, acute trauma, KL 3-4, heamaarthrosis, locking knee | 0 | Y | Inadequate power based on author’s own power analysis. Outcome measures = VAS & KOOS | No difference at 3 months. MT pattern not described.
3 Gauffin et al 2014 | Symptomatic MMT | APM, CPY | 45-64, symptoms of MT >3 months | XR, No MRI | 150 | PT | 2.8 | Ahlbach 0, KL 1-2 | Locked / locking knee. Rheumatic disease. | 21.3 | Y | OM= KOOS, EQ5D, PAS & SSS. MT pattern not described | Favored A/S at 12 months.
8 Sihvonen et al 2016 | Symptomatic Degenerative MMT confirmed on MRI & at AS. Subgroup analysis of original Sihvonen et al 2013’s patients with mechanical symptoms | APM & PT | 35 to 65 y, knee pain >3 months that was unresponsive to conventional conservative treatment and had clinical findings consistent with a tear of the medial meniscus with mechanical symptoms | XR & MRI | 69 | Sham surgery & PT | NS | KL D-1 | Trauma-induced onset of symptoms, locked or recently locking knee, decreased range of motion, instability, pathology other than degenerative knee disease requiring treatment other than arthroscopic partial meniscectomy, Meniscal repair, micro-fracture to chondral defect, meniscal repair, major chondral flap, Clinical OA based on ACR CCR. Or KL >1 | 2.5 | N | No chondroplasty undertaken. OM = VAS, Lysholm and WOMET. Blinded study. MT pattern not described. | No difference at 12 months. Authors state “This subgroup analysis is likely to be underpowered...”

### Patellofemoral Pain RCT

| Author & Year | Primary Dx | Rx | Inclusions | Ix | n | Control | % Not enrolled | Max XR OA | Joint Specific Exclusions | % X-Ove | PA | Notes | Outcome
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | ---
12 Kettunen et al 2012 | PFJ pain and symptoms lasting at least 6 months | PFJ | Age 18 – 40 years Female or male Symptoms lasting at least 6 months. PFJ pain during knee loading physical activity or in prolonged flexion. | NA | 56 | PT | 2% | KL 0 | Prior knee surgery, patella dislocation, OCD, Patella tendinopathy, Osteoarthritis, loose bodies, instability. | 10 | Y | Outcome measures = Kujala score & VAS | No difference at 2 & 5 years.

---

### Footnotes

Abbreviations:
- KOOS = Knee Injury and Osteoarthritis Outcome Score
- EQ5D = EuroQol
- PAS = Physical Activity Scale
- SSS = symptom satisfaction scale
- OA = Osteoarthritis
- PT = Physical Therapy
- AS = Arthroscopic
- APM = Arthroscopic Partial Meniscectomy
- MRI = Magnetic Resonance Imaging
- ObC = Outerbridge Classification.

KL = Kellgren Lawrence
OM – Outcome Measure
PFJ = Patellofemoral Joint
ROM = Range of Motion
XR= Radiograph
> = Less than
< = Greater than
Pts = Patients
Mx = Management
NS = Not stated
Y = Yes
N = No
ACR CCC = American Rheumatology Clinical Classification for Osteoarthritis of the Knee
PROM = Patient Recorded Outcome Measures
X-over = Cross-over
I = Investigation
n = Number of patients
CPY = Chondroplasty

CSI = Corticosteroid injection
MFC = Medial Femoral Condyle
Rx = Intervention
PA = Power Analysis
### Table 2: Arthroscopic Knee Surgery RCTs Inclusions & Exclusions using ICD 10 Codes

#### Clinical Diagnoses Included in RCTs

**Unilateral Osteoarthritis of Knee**[9][6][7]
- M17.9 Osteoarthritis of knee, unspecified
- M17.0 Bilateral primary osteoarthritis of knee
- M17.1 Unilateral primary osteoarthritis of knee

**Atraumatic Degenerate Tears to Medial Meniscus** [12][1][10][14][19][22]
- M23.2 Derangement of meniscus due to old tear or injury
- M23.22 Derangement of posterior horn of medial meniscus due to old tear or injury

- M23.30 Other meniscus derangements, unspecified meniscus
- M23.32 Other meniscus derangements, posterior horn of medial meniscus

**Patellofemoral Chondropathy**[15]
- M22.4 Chondromalacia patella

---

#### Clinical Diagnoses Excluded from RCTs*5

**Locking or Locked Knee**[7][1][10][14]
- M23.40 Loose Body in Knee[21][19][15]
- M21.26 Flexion deformity, knee
- M93.2 Osteochondritis dessicans

- M23.8 Other internal derangements of knee

**Knee Instability**[12][1][19][15]
- M23.60 Other spontaneous disruption of unspecified ligament of knee
- M23.61 Other spontaneous disruption of anterior cruciate ligament of knee

**Internal Derangements of than MMT**[1][19]
- M93.2 Osteochondritis dessicans
- M23.8 Other internal derangements of knee
- M23.25 Derangement of posterior horn of lateral meniscus due to old tear or injury
- M23.26 Derangement of other lateral meniscus due to old tear or injury

- M23.35 Other meniscus derangements, posterior horn of lateral meniscus
- M23.23 Derangement of other medial meniscus due to old tear or injury

---

#### Non Osteoarthritis Arthropathies**[9][7][6][12][1][10][14]

- M00.06 Staphylococcal arthritis, knee
- M00.86 Arthritis due to other bacteria, knee
- M02.86 Other reactive arthropathies, knee
- M05.76 Rheumatoid arthritis of knee
- M10.06 Idiopathic gout, knee
- M11.06 Hydroxyapatite deposition disease, knee
- M12.26 Villonodular synovitis (pigmented), knee

**Traumatic Meniscal Injury**[7][12][1][19]
- S83.2 Tear of meniscus, current injury

- S83.21A Bucket-handle tear of medial meniscus, current injury, initial encounter
- S83.205A Other tear of unspecified meniscus, current injury, unspecified knee, initial encounter

- S83.22A Peripheral tear of medial meniscus, current injury, initial encounter
- S83.23A Complex tear of medial meniscus, current injury, initial encounter

- S83.24A Other tear of medial meniscus, current injury, initial encounter
- S83.25A Bucket-handle tear of lateral meniscus, current injury

- S83.26A Peripheral tear of lateral meniscus, current injury, initial encounter
- S83.27A Complex tear of lateral meniscus, current injury, initial encounter

- S83.28A Other tear of lateral meniscus, current injury, initial encounter

**Traumatic or Secondary Osteoarthritis of Knee**[7]

- M17.2 Bilateral post-traumatic osteoarthritis of knee
- M17.3 Unilateral post-traumatic osteoarthritis of knee
- M17.4 Other bilateral secondary osteoarthritis of knee
- M17.5 Other unilateral secondary osteoarthritis of knee

**Meniscal Repair**[12][1]

- 0SQC4ZZ Repair Right Knee Joint, Percutaneous Endoscopic Approach
- 0SQD4ZZ Repair Left Knee Joint, Percutaneous Endoscopic Approach

---

* “Clinical Diagnoses Excluded from RCTs” does not include non-traumatic osteoarthritis in studies with a primary clinical diagnosis other than osteoarthritis.

§ Diagnoses of conditions external to the knee joint not included.

Osteoarthritis as defined by the ACR
<table>
<thead>
<tr>
<th>Study</th>
<th>Random Sequence Generation</th>
<th>Allocation Concealment</th>
<th>Blinding of Participants</th>
<th>Blinding of Outcome Assessment</th>
<th>Incomplete Outcome of Data</th>
<th>Selective Reporting</th>
<th>Other Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merchan &amp; Galindo 1993</td>
<td>Low Risk</td>
<td>Unclear</td>
<td>High Risk</td>
<td>High Risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Chang 1993</td>
<td>Low Risk</td>
<td>Unclear</td>
<td>High Risk</td>
<td>High Risk</td>
<td>Unclear</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Hubbard 1996</td>
<td>Unclear</td>
<td>Low risk</td>
<td>High Risk</td>
<td>High Risk</td>
<td>Low Risk</td>
<td>Unclear</td>
<td>Low risk</td>
</tr>
<tr>
<td>Moseley 2002</td>
<td>Unclear</td>
<td>High Risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>High Risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Kirkley 2008</td>
<td>Low Risk</td>
<td>Unclear</td>
<td>High Risk</td>
<td>High Risk</td>
<td>Unclear</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Yim 2013</td>
<td>Unclear</td>
<td>Low Risk</td>
<td>High Risk</td>
<td>High Risk</td>
<td>High Risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Sihvonen et al 2013</td>
<td>Low</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Gauffin 2014</td>
<td>Low Risk</td>
<td>Low risk</td>
<td>High Risk</td>
<td>High Risk</td>
<td>Low</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Katz 2013</td>
<td>Unclear</td>
<td>Low risk</td>
<td>High Risk</td>
<td>High Risk</td>
<td>Low</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Herrlin 2013</td>
<td>Unclear</td>
<td>Unclear</td>
<td>High Risk</td>
<td>High Risk</td>
<td>Low</td>
<td>Low</td>
<td>Low risk</td>
</tr>
<tr>
<td>Versmesan 2013</td>
<td>Unclear</td>
<td>Unclear</td>
<td>High Risk</td>
<td>High Risk</td>
<td>Low Risk</td>
<td>Unclear</td>
<td>Low risk</td>
</tr>
<tr>
<td>Kettunen 2012</td>
<td>Low Risk</td>
<td>Low risk</td>
<td>High Risk</td>
<td>High Risk</td>
<td>Unclear</td>
<td>Low risk</td>
<td>Low risk</td>
</tr>
<tr>
<td>Østeras 2013</td>
<td>Unclear</td>
<td>Unclear</td>
<td>High Risk</td>
<td>High Risk</td>
<td>Low</td>
<td>Unclear</td>
<td>Low risk</td>
</tr>
<tr>
<td>Sihvonen et al 2016</td>
<td>Low Risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low risk</td>
<td>Low Risk</td>
<td>High Risk</td>
<td>Low risk</td>
</tr>
</tbody>
</table>
Table 4: Exclusions of Medial Meniscal Tear Randomised Controlled Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Locking or locked</th>
<th>Hx of trauma</th>
<th>Meniscal Repair</th>
<th>Loose bodies</th>
<th>Major Chonral Flap</th>
<th>Other Non Meniscal Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yim 2013</td>
<td>NS</td>
<td>Yes</td>
<td>Yes</td>
<td>NS</td>
<td>NS</td>
<td>Yes</td>
</tr>
<tr>
<td>Sihvonen et al 2013</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Gauffin 2014</td>
<td>Yes</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>Yes</td>
</tr>
<tr>
<td>Katz 2013</td>
<td>Yes</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>Yes</td>
</tr>
<tr>
<td>Herrlin 2013</td>
<td>Yes</td>
<td>Yes</td>
<td>NS</td>
<td>Yes</td>
<td>NS</td>
<td>Yes</td>
</tr>
<tr>
<td>Versmesan 2013</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>Yes</td>
</tr>
<tr>
<td>Østeras 2013</td>
<td>Yes</td>
<td>Yes</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>Yes</td>
</tr>
<tr>
<td>Sihvonen et al 2016</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NS</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

• NS = Not Stated
Figure 1: PRISMA Flow Diagram

Records identified through database searching (n = 2876)

Additional records identified through other sources (n = 11)

Records after duplicates removed (n = 2329)

Records screened (n = 2329)

Records excluded (n = 2262)

Full-text articles assessed for eligibility (n = 67)

Full-text articles excluded, with reasons (n = 53)

Studies included in qualitative synthesis (n=14)